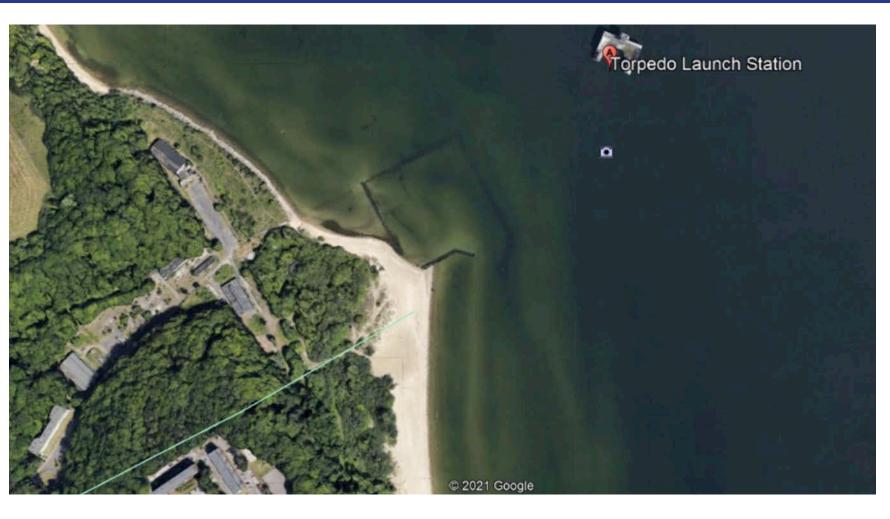


# Mapping of extreme shallow coastal area with an ASV-borne cost effective multibeam echo sounder

June 2021, Gdynia (Poland)

## Challenges

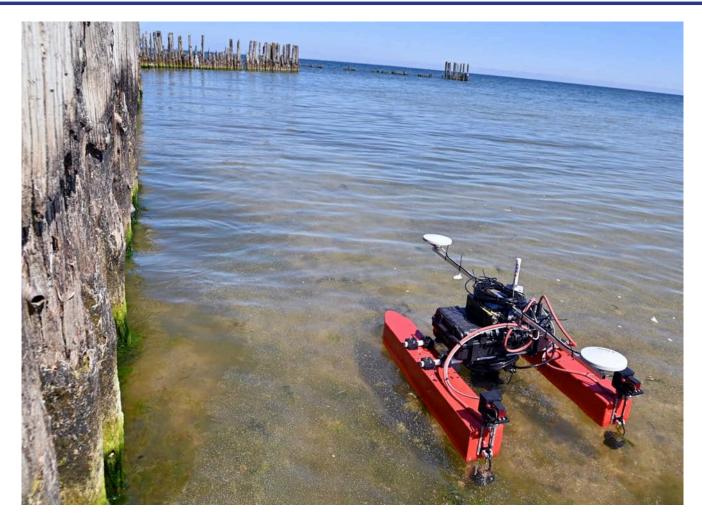



- Mapping of extremely shallow waters is a typical task in many seashore environmental or wildlife prevention projects.
- In such applications both the low draught of the survey-platform, and the very short measuring range of the echosounder are critical.
- Small draught is possible with a catamaran body ASV (USV), however in that case the small size and weight, also the low power consumption of a multibeam echosounder become critical.
- Baywei joined with a Polish ASV Developer to test and demonstrate together the capabilities a cost-effective catamaran unmanned surface vehicle and our cost efficient and accurate MBES.

# The site Historical torpedo test-range, Gdynia, Balticsea












## The Autonomous Surface Vehicle





1.2 m long

Ultralight

Low draught

Max. speed: 3 knots when fully loaded

Twin electric engines

Long-range WiFi

Battery to power for ASV and MBES

## The Multibeam Echosounder





### Baywei M5 Multibeam Sonar with Integrated GNSS/INS

#### Specifications:

| Swath coverage            | Up to 130 degrees                                                                                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Number of RX beams        | 256                                                                                                                       |
| TX beam width along-track | 1.45*                                                                                                                     |
| RX beam width             | 1° ±0.1                                                                                                                   |
| Range                     | >100m                                                                                                                     |
| Beam distribution         | Equi-Distant and equi-angular beam distribution                                                                           |
| Roll stabilisation        | Yes                                                                                                                       |
| Pressure rating           | 100m                                                                                                                      |
| GNSS/INS                  | INS in Sonar                                                                                                              |
| Position                  | HOR: ±(8mm +1ppm X Distance from RTK Station) VER: ±(15mm +1ppm X Distance from RTK Station) (Assumes 1m GNSS Separation) |
| Heading Accuracy          | 0.08° (RTK) with 2m Antenna Separation                                                                                    |
| Pitch/Roll Accuracy       | 0.03° Independent of Antenna Separation                                                                                   |
| Heave Accuracy            | 2cm or 2% (TRUEHEAVE™). 5cm or 5% (Real Time)                                                                             |
| Ping Rate                 | 50 Hz                                                                                                                     |
| Outputs                   | Bathymetry, Side Scan                                                                                                     |
| Compatible with           | Qinsy, Hypack, EIVA and others                                                                                            |
| Weight                    | Air: 3.5 kg<br>Water: 1.1 kg                                                                                              |



## Setup

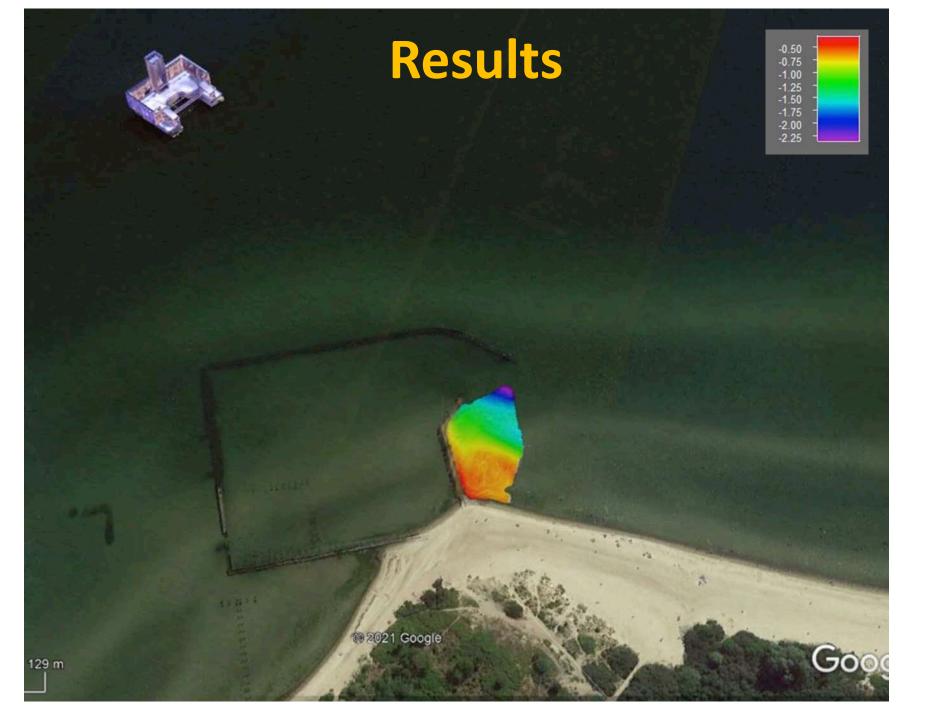


Baywei deck unit with all connections

Vehicle computer, electronics and battery in a waterproof, hard carry case

Baywei M5 multibeam echo sounder






## Simple operations

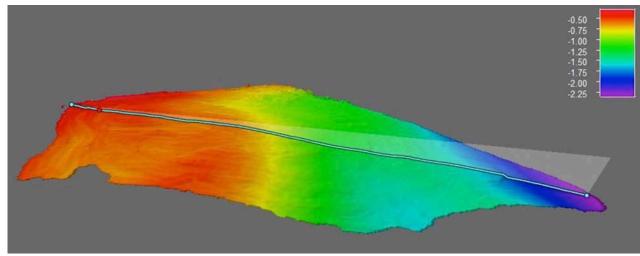
ASV operation, multibeam setup and data acquisition with a **single tablet** 

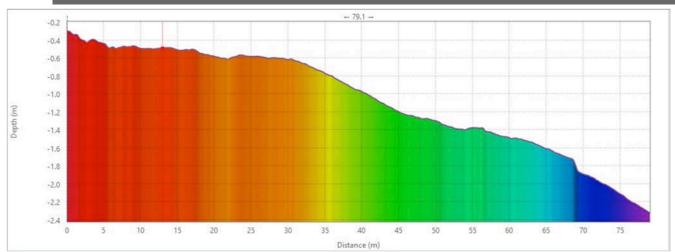









Area: 80m x 50m


Depth range: 0.3m – 2.4m

Mean depth: 0.98m

## Data example: Bathymetric profile







Area: 80m x 50m

• Depth range: 0.3m – 2.4m

Mean depth: 0.98m

Data processing: QPS Qimera

- Real-time GNSS corrections been applied for high accuracy positioning and
- Dual GNSS antenna system combined with INS for precise 3D heading and attitude calculation.

## Conclusions



- Extremely shallow waters are challenging environment for running hydrographic surveys. If there is high turbidity, the multibeam echo sounder (MBES) is the only efficient solution.
- Combination of an easily maneuverable ASV and a compact, integrated MBES was a very efficient solution for quick mapping of very shallow coastal zone.
- It was impossible to map this area by any other survey platform.
- The light construction of ASV and Baywei M5 allowed for 2 people to complete the bathymetric survey.
- Low power consumption of Baywei M5 ensured longer working time for the complete setup, therefore bigger area was covered with one battery set.

